

ACR300SG33

Fast Turn-on Asymmetric Thyristor

DS5081-2.5 June 2006 (LN24670)

FEATURES

- Double Side Cooling
- Fast Turn-on characteristics

APPLICATIONS

- · Fast capacitor discharge
- Pulse power Applications
- Fast crowbar application

VOLTAGE RATINGS

Part and Ordering Number	Repetitive Peak Off-state Voltage V _{DRM} V	Repetitive Peak Reverse Voltages V _{RRM} V
ACR300SG33	3300	20
	$T_{vj} = -40^{\circ}\text{C}$ to 125°C, $I_{DRM} = 50\text{mA}$, V_{DRM} , $t_p = 10\text{ms}$, $V_{DSM} = V_{DRM} + 100V$	$\begin{split} & T_{vj} = -40^{\circ}\text{C to } 125^{\circ}\text{C}, \\ & I_{RRM} = 50\text{mA}, \\ & V_{RRM} t_p = 10\text{ms}, \\ & V_{RSM} = V_{RRM} + 100V \end{split}$

Lower voltage grades available.

ORDERING INFORMATION

When ordering, select the required part number shown in the Voltage Ratings selection table.

For example:

ACR300SG33

Note: Please use the complete part number when ordering and quote this number in any future correspondence relating to your order.

KEY PARAMETERS

V_{DRM}	3300V
$I_{T(AV)}$	493A
I _{TSM}	6500A
dV/dt*	3000V/µs
dl/dt	2000A/µs
ton	400ns

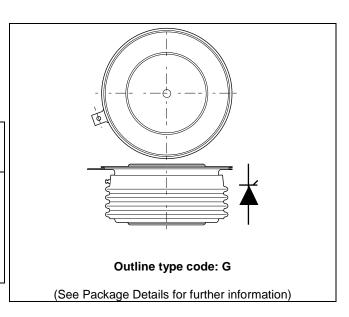


Fig. 1 Package outline

CURRENT RATINGS

T_{case} = 80°C unless stated otherwise

Symbol	Parameter	Test Conditions	Max.	Units		
Double Sid	Double Side Cooled					
I _{T(AV)}	Mean on-state current	Half wave resistive load	493	А		
I _{T(RMS)}	RMS value	-	774	А		
Ι _Τ	Continuous (direct) on-state current	-	630	Α		
Single Side Cooled (Anode side)						
I _{T(AV)}	Mean on-state current	Half wave resistive load	343	А		
I _{T(RMS)}	RMS value	-	539	А		
Ι _Τ	Continuous (direct) on-state current	-	420	Α		

SURGE RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine, T _{case} = 125°C	6.5	kA
l ² t	I ² t for fusing	$V_R = 0$	180	kA ² s

THERMAL AND MECHANICAL RATINGS

Symbol	Parameter	Test Condition	s	Min.	Max.	Units
R _{th(j-c)}	Thermal resistance – junction to case	Double side cooled	DC	-	0.042	°C/W
		Single side cooled	Anode DC	-	0.070	°C/W
			Cathode DC	-	0.092	°C/W
R _{th(c-h)}	Thermal resistance – case to heatsink	Clamping force 7.0kN	Double side	-	0.0018	°C/W
		(with mounting compound)	Single side	-	.036	°C/W
T _{vj}	Virtual junction temperature	Blocking V _{DRM} / _{VRRM}		-	125	°C
T _{stg}	Storage temperature range			-55	125	°C
F _m	Clamping force			6	8	kN

DYNAMIC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V_{TM}	Maximum on-state voltage	At 1000A peak, T _{case} = 25° C	-	2.0	٧
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V _{RRM} /V _{DRM} , T _{case} = 125°C	-	60	mA
dV/dt	Max. linear rate of rise of off-state voltage	To $V_D = 2000V$, $T_j = 125$ °C, gate open	3000		V/µs
dl/dt	Rate of rise of on-state current	From V_{DRM} to 125A Gate source 30V, 10Ω , Gate rise time $t_r \le 100 ns$, $T_j = 125 ^{\circ}C$		2000	A/µs
V _{T(TO)}	Threshold voltage	T _{vj} = 125°C	-	1.19	V
r _T	On-state slope resistance	T _{vj} = 125°C	-	0.81	mΩ
t _{gd}	Delay time	V_D = 3000V, gate source 30V, 10 Ω Gate rise time t_r = 100ns, T_j = 25°C	-	300	ns
t _r	Rise time	As defined in Figure 2 $T_j = 25$ °C		50	ns
اد	Latching current	$T_j = 25^{\circ}C, V_D = 5V$	-	600	mA
I _H	Holding current	$T_j = 25^{\circ}\text{C}, \ R_{G-K} = \infty, \ I_{TM} = 500\text{A}, \ I_T = 5\text{A}$	-	300	mA

GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
V _{GT}	Gate trigger voltage	V_{DWM} = 12V, R_L = 6Ω T_{case} = 25°C	5	V
I _{GT}	Gate trigger current	$V_{DWM} = 12V, R_L = 6\Omega T_{case} = 125$ °C	500	mA
V _{FGM}	Peak forward gate voltage		40	V
V _{RGM}	Peak reverse gate voltage		10	V
I _{FGM}	Peak forward gate current		20	Α
P _{GM}	Peak gate power		40	W
P _{G(AV)}	Average gate power	Average time 10ms max	10	W

CURRENT CARRYING CAPABILITY AFTER DEVICE SHORT CIRCUIT

In the event of a chip short-circuit due to excess anode-cathode voltage, the device will handle a high continuous RMS fault current without significant damage. Rating details are as follows:

Continuous current capability: 300A RMS, ac or dc in either direction.

Conditions:

- 1. Device single or double side cooled.
- 2. Case temperature to be held at 200°C or less.
- 3. A suitable high temperature clamp to be used.
- 4. Chip fault site resistance assumed to be $3m\Omega \pm 10\%$.

CURVES

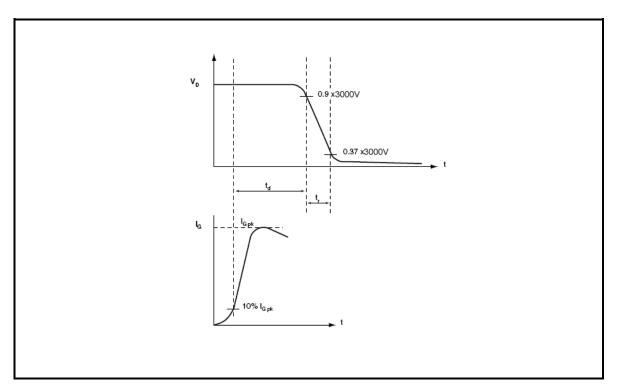


Fig.2 Turn-on time measurement

Fig.3 On-state power dissipation – sine wave	Fig.4 Maximum permissible case temperature, double side cooled – sine wave
Fig.5 Maximum permissible heatsink temperature,	Fig.6 On-state power dissipation – rectangular wave

double side cooled - sine wave

Fig.7 Maximum permissible case temperature,

Fig.8 Maximum permissible heatsink temperature,

Fig.7 Maximum permissible case temperature, double side cooled – rectangular wave

Fig.8 Maximum permissible heatsink temperature, double side cooled – rectangular wave

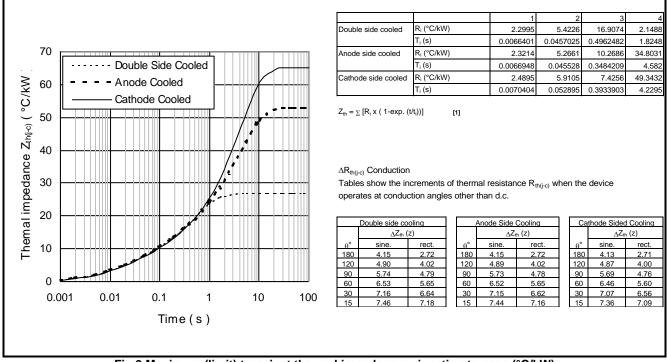
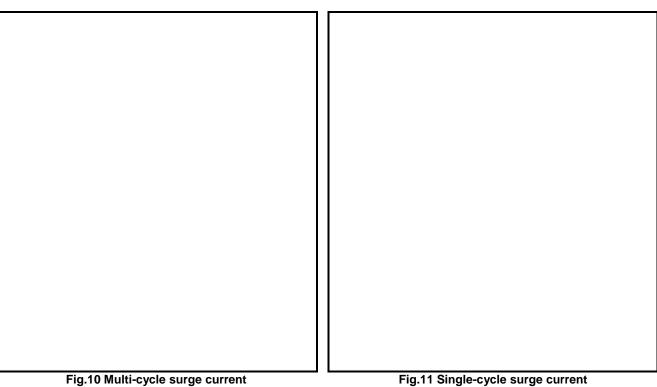



Fig.9 Maximum (limit) transient thermal impedance - junction to case (°C/kW)

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

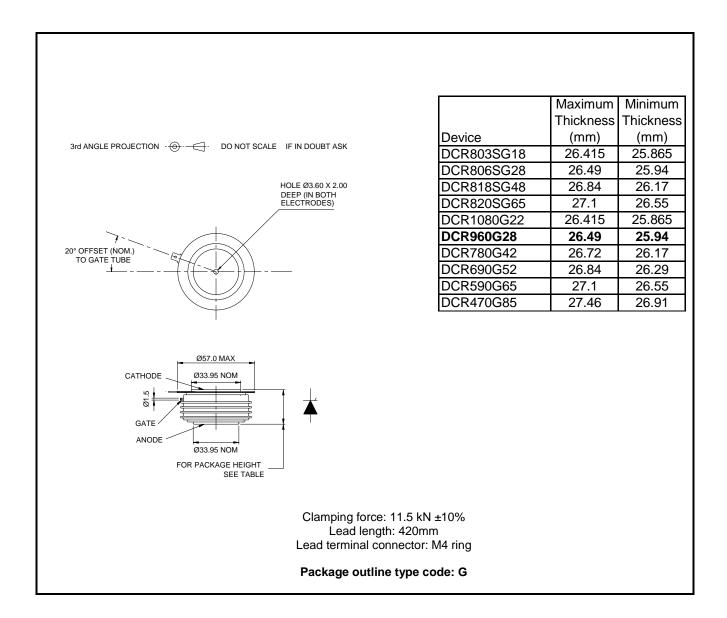


Fig.15 Package outline

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.

Stresses above those listed in this data sheet may cause permanent damage to the device. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture of the package. Appropriate safety precautions should always be followed.

http://www.dynexsemi.com

e-mail: power_solutions@dynexsemi.com

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LTD

Doddington Road, Lincoln

Lincolnshire, LN6 3LF. United Kingdom.

Tel: +44(0)1522 500500 Fax: +44(0)1522 500550 **CUSTOMER SERVICE**

Tel: +44(0)1522 502753 / 502901. Fax: +44(0)1522 500020

© Dynex Semiconductor 2003 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRODUCED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.